Bài giảng Đại số và Giải tích Lớp 11 - Tiết 57: Bài tập hàm số liên tục
Định nghĩa hàm số liên tục trên một khoảng
Hàm số f(x) xác định trên khoảng (a,b) đợc gọi là liên tục trên khoảng đó nếu nó liên tục tại mọi điểm của khoảng ấy.
Định nghĩa hàm số liên tục trên một đoạn
Hàm số f(x) xác định trên đoạn [a,b] đợc gọi là liên tục trên đoạn đó nếu nó liên tục trên khoảng (a,b) và
lim f(x) = f(a) ; lim f(x) = f(b)
x? a+ x? b-
Bạn đang xem tài liệu "Bài giảng Đại số và Giải tích Lớp 11 - Tiết 57: Bài tập hàm số liên tục", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Bài giảng Đại số và Giải tích Lớp 11 - Tiết 57: Bài tập hàm số liên tục

f(x) liên tục trên toàn trục số Giải: với x 0 f(x) là các hàm đa thức nên nó liên tục với x= 0 lim f(x) = lim (2x 2 -3x+1) = 1 x 0 + x 0 + lim f(x) = lim (1-x 2 ) = 1 x 0 - x 0 - f(0) = 1 Vậy lim f(x) = lim f(x)= f(0) x 0 + x->0 - hàm số liên tục tại x = 0. Do đó f(x) liên tục trên toàn trục số 3/4 Đáp án : 1. a = 0 2. a = 1 3. a = -2 4. không có giá trị nào của a thoả mãn đề bài. Hệ quả: Nếu hàm số f(x) là liên tục trên đoạn [a;b] và f(a).f(b) < 0 thì tồn tại ít nhất một điểm c (a;b) sao cho f(c) = 0. Nói cách khác : Nếu hàm số f(x) là liên tục trên đoạn [a;b] và f(a).f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm trên khoảng (a;b). Hãy xét sự liên tục của hàm số tại x = 0
File đính kèm:
bai_giang_dai_so_va_giai_tich_lop_11_tiet_57_bai_tap_ham_so.ppt